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Analytical treatment of a two-level system with transitive 
and displacive vibronic coupling 
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t Fakultat fur Physik, Universitat Freiburg, D-7800 Freiburg, West Germany 
j: Institut fur  Theoretische Physik 111, Universitat Stuttgart, D-7000 Stuttgart, West Germany 

Received 3 October 1984 

Abstract. The eigenvalue problem of a Hamiltonian which has been used as a model in 
exciton dynamics and in the theory of non-radiative transitions is formulated in Bargmann's 
Hilbert space of analytical functions. For particular combinations of the parameters of 
the Hamiltonian one finds exact solutions which are elementary transcendental functions. 
In the general case the eigenvalues and the eigenfunctions are determined by matrix 
continued fractions. The eigenfunctions can be represented accurately by Neumann 
expansions with very few terms. 

1. Introduction 

Recently Friesner and Silbey (1981) and Wagner (1983) and his collaborators (Denner 
and Wagner 1984, Benk and Sigmund 1985) have studied a very interesting model. 
The model consists of an electronic two-level system with a level separation E ,  a phonon 
with creation and annihilation operators b', b and a linear vibronic coupling. The 
Hamiltonian is given by 

H = b+ b + i + i ~ a :  + $ h D (  b + b t, IT: + &bA,(  b + b t, IT: (1.1) 
in Wagner's notation. Here IT, are the spin operators (IT: = 1) and D and A, are, 
respectively, the displacive and transitive vibronic interaction constants. In introducing 
this notation it is tacitly assumed that IT; is diagonal. The model is a caricature of real 
systems in the exciton dynamics of dimers and in the theory of non-radiative transitions. 
The caricature is studied because it can be diagonalised numerically. One can therefore 
test different approximation schemes and hope to learn something about the applicabil- 
ity of these schemes in less simple and more realistic vibronic systems. The questions 
Friesner and Silbey and Wagner and collaborators are asking themselves are therefore 
primarily of a physical nature. However, one can also investigate the exact structure 
of the spectrum and the eigenstates of the Hamiltonian (1.1) and this mathematical 
aspect of the problem will be treated in this paper. The paper is organised as follows. 
In 0 2 we transform the Hamiltonian (1.1) into a more convenient form and formulate 
the eigenvalue problem in Bargmann's Hilbert space of analytical functions (Bargmann 
1961, 1962). In this formalism the Schrodinger equation is a system of two coupled 
linear first-order differential equations for the two-component wavefunctions of a 
complex variable 5. The solutions are required to belong to the space of entire functions; 
this determines the eigenvalues. In  § 3 we show that an enumerable sequence of 
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isolated parameter values exists for which the eigenvalues are determined by algebraic 
equations. In this case the eigenfunctions are elementary entire functions. The low- 
lying isolated eigenvalues and eigenfunctions can be written down easily. The higher 
states become increasingly more complicated in practice (although by no means less 
elementary in principle). The states have the same properties as the isolated exact 
solutions in Jahn-Teller systems which were first discussed in a important paper by 
Judd (1979); for this reason we call them Juddian isolated exact solutions. 

In Q 4 we start from the isolated exact solutions and adapt a continued fraction 
procedure by Reik et a1 (1982, hereafter referred to as I )  to determine the eigenvalues 
in the general case. The convergence of the continued fraction is rather poor because 
the isolated exact solutions are pathologically simple. On the other hand, a Neumann 
expansion with very few terms reproduces the eigenfunctions extremely well in the 
general case as well as for the isolated exact solutions ($ 5 ) .  We are then led to a 
matrix continued fraction procedure for the determination of the eigenvalues which 
converges extremely rapidly. 

2. Transformation of the Hamiltonian and analytical formulation of the 
eigenvalue problem 

We now transform the Hamiltonian by a rotation in spin space 

a: = a, cos a - U, sin a 

U: = U, sin a + uz cos a 

and obtain instead of (1.1) 

H = b'b + f + $ E ( C T ,  cos a + u, sin a )  +h ( b  + b')[:u,,( D sin a + Aw cos a )  

+ ~ u , ( D c o s a - A , s i n a ) ] .  (2.2) 

We require in particular that the phonons interact only with a,, i.e. that the Hamiltonian 
is of the form 

H = b'b + f + (f + 28) U, + 2pux + JZK ( b  + b') U,, (2.3) 

which is a generalisation of equation (2.19) of I. Equation (2.3) is a complete Rabi 
Hamiltonian where a photon field, which is linearly polarised in the x direction, 
interacts with a spin-f system in a static field. For p # 0 the static field is not perpen- 
dicular to the polarisation direction (see figure 1). 

A comparison of equations (2.2) and (2.3) gives relations between the parameters 
of the Hamiltonians (1.1) and (2.3) which we collect in table 1. The relations with the 
parameters of Friesner and Silbey are also included. 

Friesner and Silbey (1981) also use the spin rotation (2.1) in going from their 
equation ( 1 1 )  to equation (15) ,  but they require a phonon interaction with the U, 

component only. 
In order to solve the Schrodinger equation 

HI$) = AI$)  (2.4) 

I$ )  = 5(b+)lo)lt)x + ~ ~ b + ~ l o ~ l ~ ~ x  (2 .5)  
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Figure 1. Rotation in spin space 

Table 1. Relations between the parameters of the model used by different authors. 

Friesner and Silbey 
(1981, equation ( 1 1 ) )  Wagner's group This paper 

where 

b(0 )  = 0 (2.6) 

(2.7) 
u:l&): = - IL), 
~ 2 , l t ) Z  = It): IVx = tJ5ItL +IL),) 4 t ) x  = IVx 

I&), = t 4 l t ) Z  - ILL)  4 ) x  = - IL),, 
i.e. in order to determine the functions C ( b + )  and X ( b ' )  of the creation operator 
together with the eigenvalues, we introduce Bargmann's Hilbert space of analytical 
functions (Bargmann 1961,1962). In Bargmann's method the eigenstates of the number 
operator are mapped onto the powers of a complex variable 6: 

b+"10) + 6". (2.8) 

b + +  6 b + d/d6 (2.9) 

H = 6( d/ d t )  + f + 2&, + 2pu, + J?K[ (d/ d l )  + .$]ax (2.10) 

r T =  ( f+  6) (2.11) 

I+) = ~ ( 6 ) l t ) x + x ( ~ ) I . 1 ) , .  (2.12) 

As a consequence we have 

so that the Hamiltonian and the eigenfunctions are written as 

Inserting (2.10) and (2.12) into the Schrodinger equation (2.4) and collecting the 
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components of It)x and /J)x gives the following system of linear first-order differential 
equations for ( ( 6 )  and X([): 

([+&K)(dl(()/d() - ( A  - f +  2~~ - 2p)5( 6 )  +h~((+h~) l ( ( )  + 2&(5) = 0 

( 6  - &K )( d X  (()/ d6)  - ( A  - f + 2~ * + 2p) x (6)  - &‘K ( 6  - & K ) X  ( 6 )  
(2.13) 

+ 28[(5) = 0. (2.14) 

The component function must belong to the space of entire functions. This determines 
the eigenvalues. 

The solution of (2.13) and (2.14) for s = O  is trivial: 

(2.15) 

(2.16) 

The requirement that the solutions (2.15) and (2.16) belong to the space of entire 
functions selects the eigenvalues 

A ( + )  N = N + f - 2 ~ ~ + 2 p  ( 2 . 1 5 ~ )  

A ( - ’  N = N + - 2 ~ *  - 2p. ( 2 . 1 6 ~ )  

All eigenfunctions are now entire and the eigenvalues lie on a series of equidistant 
straight lines in a A against K’ plot. We call these lines the (+) and (-) baselines in 
accordance with the notation introduced in the theory of the Jahn-Teller effect (Longuet 
Higgins et a1 1958, Thorson and Moffitt 1967, Judd 1977). For 6 Z  0 ( 6  f - i )  the A 
against K’ plot is much more involved, but it has a beautiful structure (see figures 1-3 
of I and figures 2-7 of this paper). As a result of this, the (+) and (-) baselines a le  
the loci of simple solutions and there are exactly N of them on the (+) baseline N 
and the (-) baseline N. (Solutions with negative K’ are, of course, unphysical.) 

We shall investigate these simple isolated exact solutions, the so-called Juddian 
isolated exact solutions (Judd 1979), in the next section. There are more solutions. 
with energies on the (+) baseline N and (-) baseline N which are more complicated 
and  which we shall discuss only briefly at the end of the next section. 

3. Juddian isolated exact solutions 

In the general case a #  0 and for energies on the (+) baseline N and (--) baseline N 
one still has particularly simple solutions which, in a way, remember the structure 
(2.15) and  (2.16) of the solutions in the special case s=O: they correspond to one 
particular displacement of the phonons. These solutions are, however, only possible 
for particular values of the interaction constant K ’ ,  hence the name isolated exact 
solutions. We shall treat only the solutions on the (+) baselines as the method can 
be taken over literally for the treatment of isolated exact solutions on the (-) baselines. 

In order to obtain the isolated exact solutions on the (+) baselines put 

5 ‘ + ’ ( 0  = P ( 6 )  exP( -J&? X ‘ ” ( 6 )  = ~ ( 5 )  exp( - ~ K S ) ,  (3.1) 
i.e. extract a factor exp(-t/2K6) from the solution. Insertion of (3.1) into (2.13) and  

- 
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(2.14) then gives the following system of differential equations for p ( 5 )  and ~ ( 5 ) :  

(5 + h K ) ( d p  (.$)/dt) - ( A  - f + 2~~ - 2 p ) p  (5) 28y( 5) = 0 (3.2) 

(5 -&K)(dy(t)/d[) - ( A  - f  + 2 ~ ~ +  2 p ) y ( 5 )  - 2 J - i ~ ( t - h ~ ) y ( t )  + 2 8 p ( t )  = 0. ( 3 . 3 )  

This system of differential equations has two regular singular points, t1 = - 4 2 ~  and 
&= + J ~ K ,  and one irregular singular point at infinity. We expand p ( 5 )  and y ( 5 )  
around t,, 

- 

p ( 5 )  = c CL!!'(S+.I24" (3.4) 
n =O 

Y ( 5 )  = c Y : I ) ( 5 + J T K Y 3  
n=O 

and obtain the following recurrence relations: 

( n - A + - 2 K + 2 p )  p + 2 8')';' = 0 

( 3 . 5 )  

(3.6) 

28p  '," - 2 h K  ( n + 1 )  y!,!il+ ( n - A + f + 6K * - 2 p )  y'," - 2hKY' , l !  1 = 0. (3.7) 

Using (3.6) and (3.7) one can calculate p'," and y!," as functions of the parameters 
A, K ' ,  p and 5 In general the radius of convergence of (3.4) and (3 .5 )  is 2 h ~ .  One 
possibility for an infinite radius of convergence, which makes p ( 5 )  and y ( 5 )  entire 
functions, is that the series (3.4) and (3.5) terminate. This happens for particular 
energy values on the (+) baselines, 

A = N + f - 2 ~ ' + 2 p ,  (3.8) 

and we shall carry out the procedure for N = 1 and N = 2. For N = 1 and n = 0, 1 
equation (3.6) gives 

Yt) = 1 pp = 2 8  (3.9) 

1 - - 0  pi' '  arbitrary. (3.10) 

On the other hand, from (3.7) and ( 3 . 8 )  with N = 1, n = 0 we have 

2&Ky\1)=28pc)+  (-1 + 8 K 2 - 4 p ) y r ' .  (3.11) 

By (3.10) the left-hand side of (3.11) is zero. Insertion of (3.9) on the right-hand side 
gives 

(3.12) 

as the condition for the interaction constant K *  of the isolated exact solution on the 
first (+) baseline. We will now show that the expansions (3.4) and ( 3 . 5 )  can be made 
to terminate. 

K 2  =1+1 
8 2P-fP 

By (3.10) the coefficient p(jl) is still arbitrary. We dispose of it by putting 

p i ' ) =  J T K / S .  (3.13) 

For Juddian isolated exact solutions on the (+) baseline N = 2 one proceeds as 

yb"= 1 p.b"= 8 (3.14) 

pjl)  = 2SY\" (3.15) 

?:"=O pi ' )  arbitrary. (3.16) 

Then (3.7) { n = 1) shows that y y )  = 0, which implies p:" = 0, (3.6) { n = 2}, etc. 

follows. From (3.6) { N = 2, n = 0, 1 ,2 }  we obtain 
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On the other hand, (3.7) gives for n = 0, 1 

and by (3.15) 

1 
4 2 ~  

yi” = T ( P  - 1 + 4 ~ ’ - 2 p )  (3.17) 

(3.18) 

(3.19) 

The left-hand side of (3.19) is zero on account of (3.16). Insertion of (3.17) on the 
right-hand side gives a quadratic equation for the values of K *  which correspond to 
Juddian isolated exact solutions on the second (+) baseline: 

(3.20) 

The series (3.4) and (3.5) can also be made to terminate in this case if we dispose of 
pk’) in the following way: 

p ; ’ ) = J 2 K y ( l 1 ’ / d .  (3.21) 

For arbitrary values of pi” { N  = 1) and p i ’ )  { N  5 2 )  the series (3.4) and (3.5) do 
not terminate and their radius of convergence is 2 4 2 ~ .  We are therefore forced to 
select the terminating series as the eigenfunctions of the isolated exact solutions. The 
generalisation of the procedure for arbitrary N is now obvious and we obtain N 
isolated values of K~ on the (+) baseline N. Negative roots are unphysical and have 
to be discarded. The positive roots of (3.12), (3.20), etc, correspond to Juddian isolated 
exact Solutions of (3.2) and (3.3). The functions p ( 5 )  and y ( 5 )  are polynomials in 
( 5 + 4 2 ~ )  of degree N and N - 1, respectively. In physical terms the component 
functions l’(5) and X ’ ( 5 )  are linear combinations of the ground and excited states 
of displaced harmonic oscillators with the displacement = - 4 2 ~  up to the excited 
state N and N - 1, respectively. 

It is easy to inyestigate the isolated exact solutions on the (-) baselines by extracting 
a factor e x p ( + J 2 ~ 5 )  from the functions 5 ( [ )  and X ( [ )  and expanding about the 
singular point t2. In particular, one obtains the conditions for K~ on the (-) baseline 
N if p is replaced by - p  in the corresponding conditions for the (+) baselines. 

In figures 2-7 the energy levels are given as a function of K’ ( A  against K’ plots) 
for particular values of the parameters d and p. For N = 1 and N = 2 the values of 
K’ which correspond to isolated exact solutions on the (+) and (-) baselines are 
indicated by circles. One gets an accidental double degeneracy of the isolated exact 
solutions for p =0,  i.e. if the (+) and (-) baselines N coalesce (see figures 1-3 of I )  
and for p = +M ( m  = 1,2, .  . .) (see figures 4 and 7) .  In the last case with m = 1 the (+) 
baseline N and the (-) baseline N + 1  coalesce. Equations (3.12) and (3.20) in this 
case become 

( 3 . 1 2 ~ )  

( 3 . 2 0 ~ )  

and the physical root of ( 3 . 2 0 ~ )  coincides with ( 3 . 1 2 ~ ) .  In the case of accidental 
double degeneracy the general solution of (3.2) and (3.3), and hence of (2.13) and 
(2.14), is an entire function (Ince 1956). 

K 4 + K  2 (;i6 3-2  - ~ - p ) + ~ ( P - - - p ) ( ( q P - t - p )  =o.  

K 2 , ’ - ’ g 2  

( K 2  - 4 1 + 1 - 2  2 6  ) ( K 2 + $ S 2 ) = 0  

4 2  
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1 I I I I 
0 0.2 0.4 0.6 0.8 1.0 0 0 2  0 4  0.6 08 10 

x2 m2 

Figure 2. Energy levels as a function of the interac- 
tion constant K’ for 8=0.25  ( 8  =O), p=O.1. The 
circles are the Juddian isolated exact solutions on 
the first and second (+) and ( - )  baselines. 

Figure 3. As figure 2, but for 8= 0.25 ( 8  = 0 ) ,  p = 
0.225. 

0 

I 

6 

5 

4 

x 
3 

2 

1 

-2 
0 02 OL 06 08 I C  

K 2  

0 0.2 0.4 0.6 0.8 1.0 
12 

Figure 4. As figure 2, but for 8= 0.25 (8 = 0 ) ,  p = Figure 5. As figure 2, but for 8= 0.75 ( 8  = O S ) ,  
0.25. p = O . l .  



1704 H G Reik er a1 

0 0 2  0 4  0.6 0.8 1.0 
K2 

Figure 6. As figure 2, but for d=0.75 (6=0.5), 
p = 0.225. 

0 0 2 0.4 0.6 0.8 10 

K2 

Figure 7. As figure 2, but for d =  0.75 ( 6  =OS), 
D = 0.25. 

Isolated exact solutions have been discovered in simple Jahn-Teller systems by 
Judd (1979). They have been further discussed by Reik et a1 (1981, 1982), Reik and 
Kaspar (1983) and Loorits (1983). The Juddian isolated exact solutions of (3.3) and 
(3.4) for p = O  were first given in I. 

Figures 2-7, and in particular figure 2, show that apart from the Juddian isolated 
exact solutions there are other solutions with the eigenvalue on the same baseline 
whose interaction constant K’ does not satisfy (3.12), (3.20), etc. The recurrence 
relations (3.6) and (3.7) in this case show that 

/p = 0 n = 0 ,  1 . .  . , N -  1 

#” = 0 n =o, 1 . .  . , N (3.22) 

p c )  = arbitrary. 

The higher coefficients are given by the recurrence relations (3.6) and (3.7). The 
functions p ( ” ( 6 )  and y ( ” ( 4 )  are therefore power series in ( ~ + J Z K )  with the first term 
of power N and N + 1 ,  respectively. Apart from the particular property (3.22) the 
non-Juddian solutions on the baselines share all further properti.es with the solutions 
in the general case which we treat in the next two sections. 

4. The eigenfunctions and eigenvalues outside the baselines ; a continued fraction 
procedure for the eigenvalues 

The Juddian isolated exact solutions on the (+) and (-) baselines preserve the 
displacement of the phonons in the solutions (2.15) and (2.16) (for 8 = 0 )  for finite 6 
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i.e. in the presence of terms which would like to, and in general do, scramble the (+) 
and (-) displacements. One could also say that the isolated exact solutions somehow 
manage to unscramble the different displacements of the phonons which are present 
for arbitrary values of the parameters in the Hamiltonian. Therefore the method of 
the last section is ideally suited for the treatment of the isolated exact solutions. 

However, outside the (+) baselines (3.1) puts an undue emphasis on one particular 
displacement and the expansisns (3.4) and (3 .5)  have to correct this by producing 
(among others) a teem exp(2J2~6)  which, in (3.1), gives the admixture of the second 
displacement e x p ( J 2 ~ 6 ) .  Such a term is produced by an infinite power series and 
therefore the convergence of (3.4) and (3.5) will be rather slow (from a physicist's 
point of view). Nevertheless, we use the expansions (3.4) and (3 .5)  for an important 
mathematical and computational reason: the recurrence relations for y',') and p(,I) are 
tridiagonal. They shaLe this property only with the expansion around the Second 
singular point t2 = + J ~ K  and with the equivalent expansions around & = - 4 2 ~  and 
t2 = + f i ~  for which the factor exp( + G K ~ )  is extracted from the solution. 

For p f 0 all other expansions have more complicated recurrence relations and 
most of them do not compensate for this by an improvement in convergence.- 

We shall now show how (3.4) and (3 .5)  manage to produce a term exp(2J2~6)  by 
looking at the properties of the recurrence relations at infinity. Eliminate p(,I) in (3.7) 
in favour of y!,'): 

~JZK ( n  + 1 )  y(,Iil + - n - $ + A - 6~~ + 2p + 

For n + a3 (see Erdelyi et a1 1955) 

(4.2) 

and (4.1) becomes a quadratic equation for t. If only the leading terms in n are kept 
the quadratic equation 

(4 . la)  2hKnt2  - nt  + 2J21< = o 
has the solutions 

t ,  = 1 / 2 & ~  (4.3) 

t 2= . :2 J2~ /n .  (4.4) 

The root (4.3) describes a geometrical series whose radius of convergence is 2 h ~ .  
This series must be discarded and this is only possible for the energy eigenvalues. -The 
second root t2 corresponds to the expansion of the exponential function exp(242~6)  
and furnishes us with the required admixture of the second displacement of the phonon 
in the eigenfunctions. One could now calculate the eigenvalues directly by a continued 
fraction procedure based on the tridiagonal recurrence relation (4.1). However, we 
want to use a method from I which will be generalised further in the next section. 
Therefoce we expand the functions p( 6 )  and y(  6) around the second singular point 
& =  + J ~ K .  Instead of (3.4) and (3 .5)  we then have 
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because we expect that limn+,m pi2) = limn+,= yy '  + 1 .  Finally, the energy A is eliminated 
in favour of U ,  

A = U + 4 - 2 K 2 ,  (4.9) 

so that U = constant defines a parallel to the baselines. 
Insertion of (4.5)-(4.9) in ( 3 . 2 )  and (3.3) leads to the following recurrence relations: 

(4.10) 

where the matrix elements and the determinant are given by 

(4.11) ( - 1 )  M , , ( n  + 1, n )  =z ( n  - u + 2 p )  
8~ 

( - 1 )  - M , , ( n +  1 ,  n )  =z ( 2 6 )  

M , , ( n + l , n ) =  

8~ 

2 8 (  n - U + 2 p  j 
8 ~ ' ( n  + 1 - U - 2 p )  

( 2 8 ) ' + 8 ~ ~ ( n +  1 )  
8 ~ ' ( n  + 1 - U - 2 p )  

n;i,,(n+l, n ) =  

( n  + 1)( n - U + 2 p )  
de tA?(n+ l ,n )=  - 8 ~ ' ( n  + 1 - U  - 2 p ) '  

(4.12) 

(4.13) 

(4.14) 

(4.15) 

The recurrence relations are supplemented by the initial conditions 

pb"= u + 2 p  # )  = 2 8  (4.16) 

for the regular expansion (4.5) and (4.6) around the regular singular point t2. Equation 
(4.15) shows that the expansions (4.5) and (4.6) can be made to terminate for U = n + 2p, 
i.e. on the (+) baselines. The theory of the isolated exact solutions can be set up 
starting from here. However, we want to embark directly on the calculation of the 
eigenvalues in the general case. 

The recurrence relations (4.10) determine p r )  and ?','I for given fir?, and y!,2?l, 
i.e. higher expansion coefficients are calculated from below starting with fib2' and @ 
(equations (4.16)). Therefore by (4.11)-(4.14) pL2' and 7"' are rational functions of 
U ,  K ' ,  p, and so are the right-hand sides and of the following two equations which 
define the quantities w, and W'," as rational functions of pk2), y(nz) and the matrix 
elements (4.1 1 )-( 4.14): 

w, = y?)/p!,2' (4.17) 

. (4.18) 

( M,, (n+L "))n;i:,(n+l, n) M22(n+1 ,n)  - k , , ( n + 2 ,  n + l  
W p  = M,2(n + 1, n )  ( M,z(n+l ,  n ) + M , , ( n + 2 ,  n + l )  

w,+ - 

det M ( n + l ,  n) 
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On the other hand, we might as well invert (4.10), i.e. solve for pi2’ and 7:’ in terms 
of and yi2Jl. This determines jiy’ and YL2’ from above and corresponds to the 
following equations for w, and W‘,“: 

-R,,(n+l, n)w ,+ ,+f i , , (n+l ,  n )  
f i , , ( n + l ,  n ) h + , - f i 2 2 ( n + L  n) 

wn = (4.19) 

(4.20) 

-det f i ( n + 2 ,  n + l )  
n (4.21) = 

k , , ( n + l , n )  f i 1 , ( n + 2 , n + l )  M * , ( n + 2 , n + l ) .  
M,,(n+l, n )  f i 1 , ( n + 2 ,  n + l )  R,,(n+2, n + l )  >( f i f 2 ( n + 2 ,  n + l )  - + 

) f i l i ( n + 3 ,  n + 2 )  
M,,(n+3,  n+2)  

+ -  
( 

The right-hand side of equation (4.20) can be turned into a continued fraction, 

(4.22) 

which is a transcendental function of the variable U for given values of the parameters 
K ’ ,  d and p of the Hamiltonian. If we equate (4.18) and (4.22) we obtain 

de t f i (n+ l ,n )W‘ ,“  
f i 2 * ( n + l ,  n )  f i , , ( n + 2 ,  n + l )  
M, , (n+l ,  n )  M12(n+2, n + l )  

+ -  

+ y:2wl,(  n + 1, n )  = 0 ( 4 . 1 8 ~ )  

with the transcendental function W‘,“ given by (4.22). The infinitely many roots U ,  

( i  =0,  1 , 2 , .  . .) of ( 4 . 1 8 ~ )  are independent of n and give by (4.9) the eigenvalues A,  
of the Hamiltonian. If we are interested only in the low-lying energy levels U < v the 
calculation of the eigenvalues can be considerably simplified by a particular choice of 
an integer N > m so that the continued fraction (4.22) has no poles for U < Note that 

(4.23) 

Therefore for U < v there is an integer such that 

la$)l<$ N > N .  (4.24) 

Hence by Worpitzky’s theorem (Perron 1977, Henrici 1977, Jones and Thron 1980, 
Wall 1948) 

(4.25) 

so that WG’ is a smooth function of U which approaches unity for increasing N. This 
function can be approximated to any desired degree of accuracy by a periodic continued 
fraction with period m where W$) = 1 for m = 0. We therefore have the following 
recipe for the determination of the low-lying energy levels. Choose an integer N so 
that Worpitzky’s theorem holds and approximate WC’ with the desired accuracy using 

2 <  3 -  w(.) s 2  
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a periodic continued fraction with period m. Then calculate i ig) and by (4.10)- 
(4.16). Finally insert WE', gg' and yg) in ( 4 . 1 8 ~ )  and determine the roots of the 
equation. Columns 1 and 2 of table 2 show that N = 33, m = 2 is sufficient to compute 
the ground-state energy with an accuracy of eight decimal places; column 1 of table 
3 gives the first 10 energy levels calculated with N = 50, m = 1. The A against K' plots 
(figures 2-7) are also calculated with this method as well as with the method of the 
next section. 

Table 2. Convergence of the ground-state energy. 

30 2 -1.932 19989 30 2 -1.54654266 2 1 -1.546 56667 
33 2 -1.932 19989 33 2 -1.54654281 3 1 -1.54654203 

35 2 -1.54654281 4 1 -1.54654283 
5 1 -1.54654281 

Table 3. The low-lying eigenvalues of the Hamiltonian. 

Equation (4.180) Equation (5.370) Equation (5.370) 
N = 50 N = 6  N = l O  
m = l  m = O  m = O  

6= 0.75 ( 6  = 0.5) 
K 2 =  1 K 2 =  1 K z = l  

6 =  0.75 (8 = 0.5) 8=0.75 ( 6  =0.5) 
p = 0.10 p = 0.10 p =0.10 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

-2.012 638 90 -2.012 638 90 
-1.658 467 96 - 1.658 467 96 
-1.158465 75 -1.158465 51 
-0.695 688 18 -0.695 687 68 
-0.115 337 37 -0.1 15 342 86 

0.477 953 88 0.477 941 09 
1.121 189 36 1.121 298 57 
1.766 486 93 1.766 625 08 
2.414 675 51 2.413 717 57 
2.634 392 29 2.634 156 76 

-2.012 638 90 
- 1.658 467 96 
-1.158 465 75 
-0.695 688 18 
-0.115 337 37 

0.477 953 88 
1.121 189 36 
1.766 486 93 
2.414 675 51 
2.634 392 29 

The present method requires an expansion of the component wavefunctions whose 
expansion coefficients satisfy the recurrence relations (4.10). This is also true for a 
different expansion in I (for p = 0) where correct emphasis was placed on the two 
different displacements of the phonons from the start. In that case the quantity a!,') 
((4.20) and (4.21)) which regulates the convergence of the continued fraction varies 
infinitely as n - 2 .  The convergence is therefore much better, as is clearly seen by a 
comparison of columns 2 and 3 of table 2. For p Z 0  this expansion has more 
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complicated recurrence relations and therefore no longer allows for the determination 
of the eigenvalues by the scalar continued fraction method (equation (4.18~1)). In the 
next section we shall calculate the eigenvalues and eigenfunctions for p # 0 by a matrix 
continued fraction method. A preliminary look at columns 2 and 3 of table 3 shows 
that a very rapid convergence of the eigenvalues is achieved using this method. (For 
a good exposition of the use of matrix continued fractions in physics see Risken (1984).) 

5. Reformulation of the problem: matrix continued fraction procedure for the 
energy levels 

It was shown in I that for p = 0 the Hilbert space and the spectrum of the Hamiltonian 
(2.10) decompose into two subspaces in which the component functions of the spin-up 
and spin-down components in the z direction have definite parities: 

I$)l = cpl (z ) l t )Z+th t f i (z ) l . l ) ,  (5.1) 

lIJI)2 = ;J%P*(Z)lT), +f*(z)l.l>,. (5.2) 
Here 

(5.3) 1 2  
2 = p $ .  

The functions cp,(z) andl;(z) have been expanded in Neumann series in the following 
way: 

The modified Bessel functions of half-integer order are elementary functions which 
contain the positive and negative exponentials exp(hK6)  and exp( - h ~ t )  on the 
same footing. If (5.1) and (5.2) are written in terms of the spin components It), and 
l J ) x  the parity argument shows that it is impossible to single out one exponential only 
in (5.1) and (5.2). However, by linear combination of (5.1) and (5.2) one can prepare 
either the (+) or the (-) deformation of the phonons separately. These linear combina- 
tions of (5.1) and (5.2) are eigenstates of the Hamiltonian if there is an accidental 
degeneracy of the two parts of the spectrum (see figures 1-3 of I ) .  In short, for p = 0 
Juddian isolated exact solutions always occur in pairs. 

The results of 0 3 show that for p f 0 and p # i m  the Juddian isolated exact solutions 
are non-degenerate, as are all eigenstates. The Hilbert space no longer decomposes 
and the eigenfunctions must be of the general structure 

14) = ( c p I ( Z )  +i./ZtP2(4)ItL + (iJTtf,(Z) +fi(Z))l.l)Z. (5.5) 

This can also be seen by noting that the pa,  term in (2.10) flips and 1.l), without 
doing anything to the phonons. Inserting (5.5) into (2.4) and (2.10) and collecting the 
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spin-up and spin-down components according to the parity gives the following system 
of first-order differential equations: 

t V - K 2 - $  - K ( Z + f )  - P  0 

- K  t u -  K 2 - 4 + S  0 $ V  - 0 K 2  + S - K  - P  ( Z  + $) ][::] (5.6) 
- P  

where the eigenvalue A has been eliminated in favour of v (equation (4 .9) ) .  This 
system of four differential equations decomposes into two systems of two differential 
equations for p = 0. 

Insertion of (5.4) into (5.6) leads after a lengthy but straightforward calculation to 
the following recurrence relations: 

0 -P - K  i U - K 2 - t - & !  Cp2(Z)  

(5.7) 
n + 1 ,  n ;  S) M,,(n  + 1 ,  n ;  8) 

b, +, = M2,  ( n + 1, n ; 8) M22( n + 1 ,  n ; 5) 
where the vectors a, and 6 ,  are defined by 

and M ( n  + 1 ,  n ;  8) is a supermatrix (Gantmacher 1958) whose elements Mik are 
matrices: 

M , , ( n + l , n ; S )  
M , , ( n + l ,  n ;  S )  
~ , 3 ( n  + 1,  n ;  8) 
~ ~ ~ ( n + l , n ; S )  

M , , ( n + l ,  n ;  S ) =  

MI 2( n + 1 ,  n ; S )  = 

Their elements are given by 

~ , , ( n  + 1 ,  n ;  S )  = - ~ ‘ ( f + t v  - S )  
~ , ~ ( n + l ,  n; b ) = - ~ ’ ( n + f - $ u - S )  

M ~ , (  n + 1 : n ; S )  = - K’ (  n + 1 ) - p 2  + ( n + 1 - f v + K~ + S)(f + f v - 5) 
~ , , ( n  + 1 ;  n ;  S )  = - ~ ’ ( n  + 1 )  + p 2 +  ( n  + 1 -$U+ K ’ +  S)(n +;-$U - 5) 

~ , 3 ( n  + 1 ,  n ;  5) = K’P  

M14( n + 1, n ;  S )  = - ~ ~ p  

~ , , ( n  + 1,  n ;  5) = p ( - n  -f+ v - K ’ )  

M24( n + 1 ,  ; b) = p(  2 n + - V + K 2  + 28). 
As a consequence of the structure of (5.6) we have the reciprocal relations 

M2, ( n  + 1, n ; 5) = MI2( n + 1 ,  n ; -8) 
M22(n+1,n;S)=M, , (n+1,n; -S) .  

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5 .19)  

(5 .20)  
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Furthermore there are two independent supplementary initial conditions 

b f l = (  K 2  -) 
f v  - K 2 +  6 

(5.21) 

(5.22) 

which are obtained by a Fuchsian analysis of the regular expansion (5.4) of the solution 
around the singular point z = 0 of the system (5.6). The general initial condition 
compatible with the requirement of local regularity is therefore 

a,= T , a Y ' +  q2ab2' bo= q ,b ; '+  q2bF1 (5.23) 

with coefficients q 1  and q2 which will be determined along with the eigenfunctions, 
i.e. by the requirement of global regularity. The general solution of the recurrence 
relations is then given by 

(5.23a) 

and a'," and b'," are the solutions of the recurrence relations for the initial conditions 
ab'), b!) ,  etc. It is seen that a:", b y ) ,  etc are entire functions of U ,  K ~ ,  S and p and 
that on account of the reciprocal relations (5.19) and (5.20) the symmetry of the initial 
conditions is propagated: 

a, = q l a ,  ( 1 )  + q2a'," b, = qlb',"+ q2b(,2' 

bF' (8 )  = a!, ')(-@ = b!,')(-&). (5.24) 

The determinant of the 4 ~4 matrix M (  n + 1, n ; S )  is given by 

det M ( n  + 1, n ;  8) = K8(n + U - n -2p)(  U - n +2p) (5.25) 

and shows that (5.7) allows for Juddian isolated exact solutions on the (+) and (--) 
baselines. 

The formal structure of (4.10) and (5.7) is the same except that in (5.7) we have 
supermatrices instead of matrices. One can therefore set up  a procedure for the 
determination of the eigenvalues in analogy to § 4 only if correct care is taken of the 
non-commutativity of the supermatrix elements. We expect a rapid convergence of 
the eigenvalues as correct emphasis is placed on the (+) and (-) displacements of the 
phonons in the ansatz (5.4) for the component wavefunction. In analogy with (4.17) 
and (4.18) we define two matrices w, and W'," by the vectors b,, and a, (equations 
( 5 . 2 3 ~ ) )  which are calculated from below and  therefore are entire rational functions 
of U (and the parameters K' ,  8, p ) :  

b,, = w,a, (5.26) 

(5.27) w'," = M,2( w, + M ; ; M ,  

Here 

M,,M;; M ,  , - M21)-'( fi;; fi, 1 + M,,M%).  

M , ~  = 

f i zk  = ~ ~ ~ ( n  +2, n + 1; S )  
M,k = M8k ( n + 3, n + 2 ; S ) .  

( n  + 1, n ; S )  
(5.27a) 

The right-hand side of (5.27) is therefore a matrix whose elements are rational functions 
of U (and the parameters K , ,  8, p ) .  
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Next we invert the recurrence relations. We then get, in analogy with (4.20), 

W',"= ( l+A!l )W!l l lCv)) - l  (5.28) 

which defines the matrix W:')  from above. Here 

A'," = - (MT;Mll + M22MTi)-1MTi 

ct' ' = (!Gz;; 'GI + M22M;;) -1(  M,,M;iM1 1 - MZ1). 

(5.29) 

(5.30) 

The right-hand side of (5.28) can be turned in a matrix continued fraction (Risken 1984), 

w',ll= ( i + ~ ~ ) ( i + ~ ~ ~ ~ , ( i + ~ ~ ~ ~ ( i + .  . . ) C ~ ~ ~ ) - ~ C ~ ~ ~ ~ - ~ C ~ ) ) - ~ ,  (5.31) 

by which W',) is determined unambiguously as a transcendental function of U (and 
the parameters K ' ,  8, p ) .  

A closer inspection of A'," and C'," using (5.9)-(5.20) shows that for U <  v there 
is an  integer fi so that for all integers Ai> fi the convergence criteria of Denk and  
Riederle (1982) (see also Denk 1984) are satisfied. These criteria are the matrix 
analogues of the Worpitzky-Pringsheim conditions. The matrix WE' is then a smooth 
function of U < v for fixed values of the parameters K ' ,  8 and p. We defer the actual 
calculation of this function. Instead we assume, for the time being, that the function 
is known and  insert it on the left-hand side of (5.27) for n = Ai. Equation (5.27) is 
then written in the form 

W ~ ' ( M ~ ~ M ~ ~ + M 2 2 M ~ 2 ) - ' ( M ~ 2 M ~ ~ M ~ ~ - M 2 ~ ) =  M~,wN + M I , .  (5.276) 

Now, while WK) is unambiguously defined by (5.31), wN (equation (5.26)) is not. We 
can, however, remove the ambiguity in (5.27b) by multiplying this equation from the 
right by the vector aN. This gives 

(5.32) (Mi  1 - L)ahr + k f l 2 b ~  = 0 

where 

L = w;)( M ;; MI + M~~ M ;;) - I (  M,, M T; M',  - M~~ ). (5.33) 

Equation (5.32) contains, apart from the supermatrix elements, the matrix W c )  and 
the vectors a N  and bN and is a condition which determines the coefficients v 1  and q2 
(equation (5.23a)). Insertion of (5.23a) in (5.32) gives 

v l V Y  + v 2 u N  = o  (5.34) 

where the vectors trN and uN, 

are defined by 

(5.35) 

(5.36) 

Equation (5.34) can only be satisfied if the vectors uN and uN are parallel. This entails 
the condition 

det( "") = 0. 
u N 2  

(5.37) 
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As the vector components are given as functions of U (and the parameters K ’ ,  8, p )  
the roots of this equation for U <  determine by (4.9) the low-lying energy levels A ,  
of the Hamiltonian. For each root U, there is a solution ~ j ’ ) ,  7;) of (5.34) and hence 
of the vectors U ! ) ,  b‘,“ which determine the eigenfunctions of the eigenstate i. 

We are still left with the actual calculation of the matrix W g ) ,  which we had 
postponed. We assume, subject to later verification, that it is possible to find a 
reasonably small value of N for which W g )  in (5.33) can be approximated by the unit 
matrix. Next we multiply equation (5.34) by the matrix f i12 (M2zM; i  + fi;iMll) and 
obtain 

711U’, + qp’, = 0 

U” = ( f i I IM, ,  +filzM21)ug)+(fi12M22+ f i l lMl2)bg)  

(5.34a) 

( 5 . 3 6 ~ )  

The vectors U’, and U &  are now entire rational functions of v (and  the parameters 
K ’ ,  8, p ) .  Therefore the equation 

U’, = ~ f i , l M , l + f i , 2 M 2 , ) u ‘ $ ~ + ( f i 1 2 M 2 2 + f i 1 1 M 1 2 ) b ~ ) .  

(5.37a) 

contains all roots U ,  of the equation (5.37) but all poles of (5.37) have been eliminated. 
Columns 2 and 3 of table 3 show the 10 lowest eigenvalues of the Hamiltonian which 
have been calculated by (5.37a) for N = 6 and N = 10. The convergence is very rapid 
indeed and  the assumption made for Wg.) is fully satisfied for N = 10. 

In this formalism the isolated exact solutions are obtained in the following way. 
On the (+) and (-) baselines N the determinant of the 4 ~4 matrix M (  n + 1, n ;  8) is 
zero by (5 .25 ) .  As a consequence (Gantmacher 1958) the determinant of the 2 x 2  
matrix MZ2M;4Ml1 -M21 is also zero and so is det L. Therefore the isolated exact 
solutions have to satisfy the conditions 

7 I ( MI U%’ + Mlz b g ) )  + 72( MI U‘$) + Mlzb$’)  = 0 

7 1 L u g )  + ?l2Lll$’ = 0. 

The calculation is more complicated than in § 3 because we start from a expansion of 
the wavefunctions in which the displacements are scrambled. 

6. Discussion 

The methods and results of the preceding section can be summarised as follows. The 
component wavefunctions are linear combinations of the ground and  excited states of 
two displaced harmonic oscillators with displacements t1 and t2. Therefore we start 
from the expansion (5.4) and (5.5) of the wavefunction in which correct emphasis is 
placed on the two different displacements 5, and t2 of the phonons. This leads to a 
two-term recurrence relation between four component vectors and  the condition for 
the eigenvalues of the Hamiltonian involves a matrix continued fraction with excellent 
convergence properties. For this reason the actual calculation of the matrix continued 
fraction can be avoided. Furthermore by ( 5 . 3 4 ~ )  and ( 5 . 3 6 ~ )  the conditions for the 
eigenvalues d o  not involve any inverted matrices. The determinantal equation ( 5 . 3 7 ~ )  
is therefore free of poles. Furthermore the slope of the determinant at the zeros can 
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be made very large for reasonable values of N, so that the roots of the determinantal 
equation can be determined very accurately. 

During the preparation of this paper we learnt that the Hamiltonian (1.1) and its 
eigenvalue problem are also being studied by the groups of Sigmund (Stuttgart) and 
Reineker (Ulm) (Durst et a1 1985). They work in the occupation number representation 
of the Hamiltonian (l.l), which in Bargmann's method corresponds to a power series 
expansion of l (5)  and X ( 5 )  in (2.12). The recurrence relations are not tridiagonal. 
As the power series expansions have to produce the exponential functions exp(ah.5)  
and exp( - h K t ) ,  the convergence of the expansion must be the same as in § 4. Durst 
(1984) compared the low-lying eigenvalues calculated by the two methods for some 
parameters and found complete agreement in all cases. 

Finally it should be mentioned that a zero determinant (5.25) is necessary but by 
no means sufficient to give terminating series for the eigenfunction. The symmetry of 
the supermatrix in (5.2) and the existence of two independent initial conditions (5:21) 
and (5.22) is absolutely vital. We know of counterexamples for rather similar Hamil- 
tonians where one cannot satisfy the recurrence relations by terminating series in spite 
of a zero determinant. 
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